X-ray diffraction and Ir-absorption characteristics of lanthanide orthophosphates obtained by crystallisation from phosphoric acid solution

R. KIJKOWSKA^{*,§}, E. CHOLEWKA[‡], B. DUSZAK^{*}

*Institutes of Inorganic Chemistry and Technology, [‡]Organic Chemistry and Techmnology, Cracow University of Technology, 31-155 Kraków, Warszawska 24, Poland E-mail: Kij@chemia.pk.edu.pl

Powders of LnPO₄ · H₂O (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and Y) prepared by crystallisation from boiling phosphoric acid (2 M H₃PO₄/1) solution were characterised by X-ray diffraction and FTIR-spectroscopy. Hexagonal LnPO₄ · H₂O (La \rightarrow Tb), tetragonal (Ho \rightarrow Lu and Y) and orthorombic DyPO₄ · H₂O crystalline modifications were identified. Ir-spectra of the hydrated hexagonal, anhydrous tetragonal LnPO₄ · H₂O (Dy, Ho, Er, Tm, Yb, Lu and Y) and anhydrous monoclinic (La \rightarrow Tb) are consistent with those reported in the literature. However, the hydrated tetragonal LnPO₄ · H₂O (Ho, Er, Tm, Yb, Lu and Y) display a surplus band (625 cm⁻¹) in the region of ν_4 , which was not reported in the literature. The band disappears after ignition at 950°C, while the tetragonal structure is still maintained, which may imply that it is attributed to hydrogen bonding of H₂O molecules to the phosphate oxygen in hydrated salts. Some of the phosphates, after ignition at 950°C, display additional P₂O₇⁴⁻ band at 1265–1267 cm⁻¹. That may be resulted from HPO₄²⁻ for PO₄³⁻ substitution in the phosphates crystallised in acidic (2 M H₃PO₄/1) solution. © *2003 Kluwer Academic Publishers*

1. Introduction

Rare earth element phosphates display a variety of structures. They appear in hexagonal, tetragonal, orthorhombic and monoclinic modifications. The hydrated orthophosphates LnPO₄ · nH₂O exist in hexagonal (Ln = La \rightarrow Dy) with the space group D₆⁴, Z = 3, [1–5] or tetragonal (xenotime) (Ln = Ho \rightarrow Lu and Y) forms [3–9]. The tetragonal is isomorphous with zircon which has the space group D_{4h}¹⁹ (*I*4₁/amd), Z = 4. TbPO₄ · *n*H₂O has been also reported as tetragonal [8], whereas DyPO₄ · H₂O, besides the hexagonal, may be tetragonal or orthorombic [8–12]. The crystal structure of the series of synthetic LnPO₄ · *n*H₂O (Ln = La, Ce, Nd) was first established by Mooney [1, 13] and confirmed later by many other authors [2–12, 14–19].

There is an uncertainty about the number of H_2O molecules in the LnPO₄ · nH_2O and its role in the crystal structure. The H_2O is related to the specific structure of LnPO₄ · nH_2O [1, 20, 21]. There are large channels along the *c*-axes in the hexagonal and tetragonal crystal modifications. These channels accommodate nonstoichiometric water molecules. Mooney postulated different amount of water in the hexagonal LnPO₄ · nH_2O ranging in (*n*) from 0.5 to 1.5. That is probably why published data concerning the LnPO₄ · nH_2O , obtained by different precipitation techniques, provide different (*n*) numbers, which may lead sometimes to confusing data.

On heating to 900°C the hexagonal modification transforms into monoclinic one with the space group C_{2h}^5 (P2₁/m), Z = 4 [4, 5, 7, 10, 14–17], while the tetragonal maintains its structure after dehydration upon ignition.

The aim of the present work was to characterise the powders of lanthanide phosphates obtained by crystallisation from boiling phosphoric acid solution containing 2 M/1 of H_3PO_4 and 0.02 M/1 Ln (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and Y). The method of preparation was described in a separate paper [22].

2. Materials and methods

All the investigated phosphates of $LnPO_4 \cdot nH_2O$, obtained by crystallisation from boiling phosphoric acid solution, contained water. The amount of water (*n*), determined by thermogravimetric method, was approximately equivalent to 1 molecule per formula unit.

To characterise the crystallised solids X-ray powder diffraction patterns (XRD) were acquired using Philips Xpert XRD equipment furnished with graphite monochromator PW 1752/00, with radiation Cu K_{α}, Ni filter, 2 Θ from 10 to 60 degrees at 30 kV, 30 mA. For the unit cell parameters determination program Unit Cell (Tim Holland and Simon Redfern) was applied. The Ir spectra were recorded using spectrometer FTIR - FTS 175 (Bio-Rad).

3. Results and discussion

3.1. Powder X-ray diffraction

Three different types of crystalline powders of the hydrated phosphates have been identified. They were hexagonal LnPO₄ \cdot H₂O (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb), (Fig. 1), tetragonal LnPO₄ \cdot H₂O (Ho, Er, Tm, Yb, Lu) isostructural with YPO₄, (Fig. 2) and orthorhombic DyPO₄ \cdot H₂O. XRD analyses showed shifts in the positions of diffraction peaks reflecting the contraction of the ionic radii of the lanthanides.

The unit cell dimentions obtained are in fair agreement with those in literature. The lattice parameters, plotted against the revised crystal (CR) ionic radii of the eight-coordinated lanthanide three-valent cations [23] are presented in Fig. 3A and B.

It has to be noted, that there were some problems with identification of the $DyPO_4 \cdot H_2O$ crystal modification. According to literature it may crystallise in the hexagonal, tetragonal or orthorombic form. Although

Figure 1 X-ray diffraction pattern of hexagonal $(La \rightarrow Tb)PO_4 \cdot H_2O$ and orthorombic DyPO₄ $\cdot H_2O$.

Figure 2 X-ray diffraction pattern of tetragonal (Ho \rightarrow Lu, Y) PO_4 \cdot H_2O.

its XRD pattern (Fig. 1) is very similar to that of the hexagonal, it cannot be indexed in this modification. Instead, the XRD of $DyPO_4 \cdot H_2O$ has been fit to the orthorhombic system with the unit cell parameters:

 $a = 0.69528 \pm 0.00288$ nm, $b = 1.37126 \pm 0.00645$ nm, and $c = 0.90927 \pm 0.00343$. However, the error on the level of 95% confidence is large in comparison to the error of the *a*- and *c*-axes of the rest of the LnPO₄ · H₂O in the hexagonal or the tetragonal crystallographic forms, which was ranging from 0.00009 to 0.00037 nm. Difficulties with the identification of the DyPO₄ · H₂O structure were also reported by Hezel and Ross [20], who pointed out that some XRD lines were at the intermediate positions of the reported structures.

3.2. IR-spectra

Ir spectra of rare earth element and Y phosphates have been extensively discussed by Hezel and Ross [20]. Data concerning some individual elements in question were reported later by other authors [6, 21, 24–26].

Figure 3 (A) a-axis, (B) c-axis of the hexagonal and tetragonal LnPO₄ \cdot H₂O unit cell plotted against ionic radii of the lanthanide.

The spectra have been discussed with reference to crystal class, space symmetry and anion site symmetry. Mooney postulated that the space group of the hexagonal form of the LnPO₄ \cdot H₂O was D₆⁴ (C6₂2) with Z = 3. The author considered also a departure from D₆⁴ into a lower symmetry D₃⁴ (C3₁2) but the deviations were too small to be detected [1]. The above space group provides sets of threefold sites with point symmetry D₂ for the metal and phosphate ions, and sixfold sites with point symmetry C₂ for phosphate [1, 25, 27]. Following the correlation table (Table I) for site symmetries

TABLE I Correlation between selected site symmetries and Iractivities of the vibrations (ν) of tetrahedral PO₄³⁻ anion [20]

Site symmetry	ν_1	<i>v</i> ₂	<i>v</i> ₃	<i>v</i> ₄
T _d	A ₁ (inactive)	E (inactive)	F ₂ (active)	F ₂ (active)
D _{2d}	A ₁ (inactive)	$A_1 + B_1$ (inactive)	$B_2 + E$ (active)	$B_2 + E$ (active)
D ₂	A (inactive)	2A (inactive)	$B_1 + B_2 + B_3$ (active)	$B_1 + B_2 + B_3$ (active)
C ₂	A (active)	2A (active)	A + 2B (active)	A + 2B (active)

Figure 4 Ir-spectra of the hexagonal $(La \rightarrow Tb)PO_4 \cdot H_2O$ and orthorombic $DyPO_4 \cdot H_2O$.

and activities of the vibrations of tetrahedral ion, if the PO_4^{3-} anion occupied D_2 sites the v_1 and v_2 would be Irinactive [20]. According to Hezel *et al.* [20], and Petrov [25] who investigated Ir spetra of LnPO₄, their spectra were consistent with the C₂ site symmetry.

Our Ir-spectra can be classified in four groups:

1. hydrated hexagonal $LnPO_4 \cdot H_2O$ (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb) and orthorhombic $DyPO_4 \cdot H_2O$ (Fig. 4),

2. hydrated tetragonal $LnPO_4 \cdot H_2O$ (Ho, Er, Tm, Yb, Lu and Y) (Fig. 5),

3. anhydrous tetragonal LnPO₄ (Dy, Ho, Er, Tm, Yb, Lu, and Y) (Fig. 6),

4. anhydrous monoclinic LnPO₄ (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb) (Fig. 7).

(1) and (2) are the original (not ignited) samples prepared by crystallisation from boiling phosphoric acid (2 M/1 H₃PO₄) solution, while (3) and (4) are obtained upon ignition at 950°C.

Figure 5 Ir-spectra of the hydrated tetragonal (Ho \rightarrow Lu, Y)PO₄ · H₂O.

3.2.1. Ir-spectra of hydrated hexagonal and the orthorombic phosphates

Except v_3 , which is broad and incompletely resolved, the spectra are consistent with the C₂ anion site symmetry reported by Hezel and Ross [20], assuming that v_2 is too weak to be recorded. The v_1 band (966 cm⁻¹ for La) is systematically shifting into higher frequency (985 cm⁻¹ for Dy) (Fig. 4). That systematic shift was also observed by Hezel and Ross [20]. Ir of the Tb and Dy phosphates exhibits lower resolution in the region of v_1 .

 v_4 appears as a triplet. It is characteristic for the triplet that the intensity of one of the v_4 band (569 cm⁻¹ for La) of the triplet is decreasing when the atomic number of the element is increasing (Fig. 4, arrow). It is still recorded as a very weak shoulder (575 cm⁻¹) in TbPO₄ · H₂O, while becomes absent in the spectra of DyPO₄ · H₂O. Instead, the DyPO₄ · H₂O shows a shoulder of a new band at wave number 524 cm⁻¹, at the same position as the strong one (525 cm⁻¹), characteristic to the tetragonal (Ho \rightarrow Lu and Y) phosphates (Figs 5 and 6).

3.2.2. Ir-spectra of tetragonal phosphates

Referring to Hezel and Ross [20] the PO_4^{3-} tetrahedron in the tetragonal LnPO₄ · H₂O (xenotime structures) with the D_4^{19} space group should occupy D_{2d} sites. Under such symmetry v_1 and v_2 are inactive, while v_3 and v_4 are each split into two components (Table I). In their spectra, which were consistent with the D_{2d} site symmetry, there were no differences in the hydrated and not-hydrated Ir-spectra of the tetragonal lanthanide phosphates.

Figure 6 Ir-spectra of the dehydrated tetragonal $(Dy \rightarrow Lu, Y)PO_4$.

In our case, there is a different number of the v_4 bands in Ir-spectra of the (a) hydrated and (b) dehydrated (ignited at 950°C) phosphates of the tetragonal form (Figs 5 and 6)

(a) Ir-spectra of the hydrated tetragonal LnPO₄ · H₂O (Ho, Er, Tm, Yb, Lu and Y), is not showing the bands attributed to v_1 and v_2 (Fig. 5). That may imply that the anions in this structure occupy D_{2d} sites (Table I). However, there are three (instead of two) bands in the region of v_4 . Two of the bands correspond with Hezel and Ross while a surplus band appears at wave number position (625–628 cm⁻¹) similar to that which was observed in the hexagonal hydrated forms.

(b) The spectra of the dehydrated tetragonal orthophosphates LnPO₄ (Dy, Ho, Er, Tm, Yb, Lu, and Y) are presented in Fig. 6. As predicted from the correlation Table I there are only two bands in the region of v_4 ; one at a steady position (525 cm⁻¹), and another one which position is shifting along the group of the elements from Dy (640 cm⁻¹) to Lu (655 cm⁻¹). The band at 625–628 cm⁻¹, which was present in the

Figure 7 Ir-spectra of the monoclinic (anhydrous) lanthanide phosphates.

hydrated tetragonal LnPO₄ \cdot H₂O (Fig. 5), disappeared after ignition, resulting in Ir-spectra similar to those of Hezel and Ross, consistent with the D_{2d} site symmetry, reported by those authors [20].

In some ignited tetragonal samples pyrophosphate band appeared at about 1250 cm⁻¹. In those cases a weak band of ν_2 at 494–498 cm⁻¹ was recorded, which may imply that pyrophosphate ion lowers symmetry, which deviates from the D_{2d}.

At the present stage of investigation only some speculative reasoning can be introduced. Based on it the differences in Ir-spectra between the hydrated and anhydrous tetragonal phosphates might be explained in terms of hydrogen bonding of H₂O molecules to the phosphate oxygen in hydrated salts. The interaction may lower point symmetry of the anion PO_4^{3-} into D₂, in which v_1 and v_2 are still inactive while v_4 have three components (Table I). If so, the hydrogen bonding would contribute to the Ir-spectra giving rise to an extra frequency. It is worth to point out, that dysprosium phosphate as $DyPO_4 \cdot H_2O$ hydrate crystallised in orthorombic form with Ir-spectra similar to those of the hexagonal form, then, during ignition at 950°C transformed into anhydrous tetragonal form with Ir-spectra characteristic to those of the xenotime structure.

3.2.3. Ir-spectra of the monoclinic phosphates

According to Hezel *et al.* the PO_4^{3-} site symmetry in the monoclinic (monazite) LnPO₄ structure should be C₁. Under such symmetry no selection rules operate and all possible combinations of fundamental vibrations would be Ir active. They also reported that in the v_4 region four bands appeared as two doublets; the upper doublet split about 45 cm⁻¹ and the lower doublet by 25 cm⁻¹.

Ir-spectra of our monoclinic LnPO₄ obtained by ignition of the hexagonal La \rightarrow Tb phosphates at 950°C is presented in Fig. 7. The spectra display an increased resolution in the region of v_3 , four bands in the region of v_4 , and the presence of v_2 around 495 cm⁻¹. The v_4 appeared as two doublets, for example, NdPO₄ shows a doublet at 580 cm⁻¹, 627 cm⁻¹ (difference 47 cm⁻¹) and a doublet at 544 cm⁻¹, 570 cm⁻¹ (difference 26 cm^{-1}). However, when pyrophosphate band $(1255-1263 \text{ cm}^{-1})$ appeared, which happened in some cases, the resolution of the doublets was lower. That may be a result of some interference of the pyrophosphate ion with orthophosphate vibrations. The presence of $P_2O_7^{4-}$ band in some ignited samples may be resulted from the presence of HPO_4^{2-} in the lanthanide phosphates crystallised from acidic solution (2 M H₃PO₄/1) where HPO_4^{2-} for PO_4^{3-} substitution is possible. The weak P–O–H band due to the presence HPO_4^{2-} at about $850-880 \text{ cm}^{-1}$ is usually observed in other phosphates like hydroxyapatite [28, 29]. In the investigated phosphates a very weak band at $880-900 \text{ cm}^{-1}$ (Fig. 4) and a shoulder at 910 cm^{-1} (Fig. 5) has also been recorded. If the HPO_4^{2-} is present it should be decomposed upon ignition at higher than 500°C and according to the reaction: 2 HPO₄²⁻ \rightarrow P₂O₇⁴⁻ + H₂O the pyrophosphate ion is possible to appear.

4. Conclusion

Three different types of hydrated lanthanide phosphates crystallised from 2 M/1 H₃PO₄ boiling phosphoric acid solution containing 0.02 M/1 of Ln. They were hexagonal LnPO₄ \cdot H₂O (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb), (Fig. 1), tetragonal LnPO₄ \cdot H₂O (Ho, Er, Tm, Yb, Lu) isostructural with YPO₄, (Fig. 2) and orthorhombic DyPO₄ \cdot H₂O.

Ir-spectra indicate that the hydrated hexagonal, anhydrous tetragonal $LnPO_4 \cdot H_2O$ (Ho, Er, Tm, Yb, Lu and Y) and anhydrous monoclinic are consistent with those reported in the literature.

As opposed to the anhydrous tetragonal, hydrated tetragonal LnPO₄ · H₂O (Ho, Er, Tm, Yb, Lu) display a surplus band (625 cm⁻¹) in the region of v_4 , which was not reported in the literature. The band disappears after ignition at 950°C, while the tetragonal structure is still maintained. That may imply that the extra (625 cm⁻¹) band is attributed to hydrogen bonding of

H₂O molecules to the phosphate oxygen in hydrated salts.

Some of the phosphates after ignition at 950°C display additional $P_2O_7^{4-}$ band at 1265–1267 cm⁻¹. In such cases the ν_2 (forbidden for D_{2d}) becomes active and the band is recorded at 490–498 cm⁻¹ (Fig. 6). The presence of $P_2O_7^{4-}$ band may be resulted from the presence of HPO_4^{2-} in the lanthanide phosphates crystallised from acidic solution (2MH₃PO₄/1) where HPO_4^{2-} for PO_4^{3-} substitution is possible.

References

- 1. R. C. L. MOONEY, Acta Cryst. 3 (1950) 337.
- 2. F. WEIGEL, V. SCHERRER and H. HENSCHEL, *Radiochim.* Acta 4 (1965) 18.
- A. HEZEL and S. D. ROSS, J. Inorg. Nucl. Chem. 29 (1967) 2085.
- 4. K. K. PALKINA, Neorgan. Mat. 18(9) (1982) 1413.
- 5. P. A. BONDAR, A. I. DOMANSKI, L. H. MEZENTSEVA, M. G. DEGEN and N. E. KALININA, *Zh. Neorg. Khim.* **21**(8) (1976) 2045.
- 6. A. N. LAZAREV, N. A. MAZENOV and A. N. MIRGORODSKI, *Neorgan. Mat.* **14**(11) (1978) 2107.
- 7. YU. NI and J. M. HUGHES, Am. Mineralogist 80 (1995) 21.
- 8. H. SCHWARZ, Zeits. Anorg. Algem. Chemie 323 (1963) 44.
- 9. A. T. ALDRED, Acta Cryst. B 40 (1984) 569.
- P. V. REPKO, V. P. ORLOVSKI, G. M. SAFRONOV, KH. M. KURBANOV, M. N. TSEITLIN, V. I. PAKHOMOV, V. I. TANANAEV and A. N. VOLODINA, *Neorgan. Mat.* (*Russ*) 7(2) (1971) 251.
- 11. H. ITO, Y. FUJISHIRO, T. SATO and A. OKUWAKI, *British Ceram. Trans.* **94**(4) (1995) 146.

- 12. Y. HIKICHI, KEN-ITI HUKUO and J. SHIOKAWA, Bull. Chem. Soc. Jap. 51(12) (1978) 3645.
- 13. R. C. L. MOONEY, J. Chem. Phys. 16 (1948) 1003.
- 14. M. KIZILYALLI and A. J. E. WELCH, J. Appl. Cryst. 9 (1976) 413.
- 15. J. G. PEPIN and E. R. VANCE, J. Inorg. Nucl. Chem. 43 (1981) 2807.
- 16. G. W. BEALL and L. A. BOATNER, *ibid.* 43 (1981) 101.
- KH. M. KURBANOV, V. A. EFREMOV and V. P. ORLOVSKI, Kristallografia (Russ) 31(4) (1986) 800.
- 18. M. KIZILYALLI, J. Inorg. Nucl. Chem. 38 (1976) 483.
- 19. J. D. DONALDSON, A. HEZEL and S. D. ROSS, *ibid.* **29** (1967) 1239.
- 20. A. HEZEL and S. D. ROSS, Spectrochim. Acta 22 (1966) 1949.
- 21. S.-L. TIE, Y.-Y. LI and Y.-S. YANG, J. Phys. Chem. Solids 58(6) (1997) 957.
- 22. R. KIJKOWSKA, J. Mater. Sci. 37 (2002).
- 23. R. D. SHANNON, Acta Cryst. A 32 (1976) 751.
- 24. S. TIE, Q. SU and Y. YU, J. Alloys and Comp. 227 (1995) 1.
- 25. K. P. PETROV, I. V. TANANAEV, V. G. PERVIKH and S. M. PETUSHKOVA, *Zh. Neorg. Khim.* **12**(10) (1967) 2645.
- 26. R. W. MOONEY and S. Z. TOMA, J. Chem. Phys. 46(9) (1967) 3364
- 27. R. S. HALFORD, *ibid.* 14 (1946) 8.
- R. Z. LEGEROS, "Calcium Phosphates in Oral Biology and Medicine" (Krager, New York, 1991) p. 95.
- 29. R. KIJKOWSKA, S. LIN and R. Z. LEGEROS, in "Bioceramics," Vol. 14 (ttp - Trans Tech Publications, Switzerland, 2002) p. 31.

Received 18 April and accepted 24 September 2002